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Abstract—The Model-Constructing Satisfiability Calculus
(MCSAT) framework has been applied to SMT problems over
various arithmetic theories. NLSAT, an implementation us-
ing cylindrical algebraic decomposition (CAD) for explanation,
is especially competitive for nonlinear real arithmetic (NRA)
constraints. However, current Conflict-Driven Clause Learning
(CDCL)-style algorithms only consider literal information when
making decisions, and thus ignore the influence of clauses
on arithmetic variables. This limitation may lead NLSAT to
encounter unnecessary conflicts due to suboptimal literal choices.
To address this issue, we analyze conflicts caused by literal
decisions and incorporate clause-level information that directly
affects arithmetic variables. We propose two main algorithmic
improvements: a clause-level feasible-set-based look-ahead mech-
anism and an arithmetic propagation-based branching heuristic.
We implement our solver, named clauseSMT, based on a dy-
namic variable ordering framework. Experiments indicate that
clauseSMT is competitive on nonlinear real arithmetic problems
compared with existing SMT solvers (CVCS, Z3, YICES2),
and it outperforms all of them on satisfiable instances of
SMT(QF_NRA) in SMT-LIB. We also evaluate the effectiveness
of our proposed methods.

Index Terms—NLSAT, nonlinear real arithmetic, SMT, clause
level.

I. INTRODUCTION
A. Motivation

Satisfiability Modulo Theories (SMT) refers to the problem
of determining the satisfiability of formulas in first-order
logic. SMT problems typically involve theories such as linear
and nonlinear arithmetic, uninterpreted functions, strings, and
arrays [1]]. As a fundamental problem in software engineer-
ing, formal methods, and programming languages, SMT has
widespread applications, including symbolic execution [2f], [3]],
program verification [4]], [5]], program synthesis [6], automata
learning [7]], [8]], and neural network verification [9]—[12]].

Nonlinear real arithmetic (NRA) is a class of arithmetic
theories. It consists of atoms represented as inequalities over
polynomials, and is therefore sometimes referred to as the
theory of polynomial constraints. Variables can take Boolean
or real values, depending on their types. SMT(NRA) instances
are typically generated from both academic and industrial
applications. They are commonly used in cyber-physical sys-
tems [[13]-[15]], ranking function generation [16], [17], and
nonlinear hybrid automata analysis [[18]]. Instances from these
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applications are collected in the SMT-LIB benchmarks [19].
The high performance of SMT solvers over nonlinear arith-
metic has significantly improved these applications.

Decision procedures for solving nonlinear arithmetic are
usually based on cylindrical algebraic decomposition (CAD)
[20], a widely used tool for real quantifier elimination. CAD
generates the current unsatisfiable cell during the search pro-
cedure and is employed in modern algorithms. Among these,
NLSAT [21] is a mainstream algorithm that leverages CAD
for lemma generation. Its core idea is to assign values directly
to arithmetic variables, rather than at the literal level as in
CDCL(T).

Although NLSAT introduces the novel approach of directly
assigning arithmetic variables, it still relies on literal deci-
sions when processing arithmetic clauses containing several
unevaluated literals. These decided literals are then used for
conflict analysis within the CDCL-style framework. However,
improper literal decisions can sometimes induce conflicts,
slowing down the overall search process. Therefore, a heuristic
for literal decisions is necessary.

We identify three central problems and present our solutions
in the context of algorithmic improvements:

o What factors cause conflicts in the NLSAT algorithm, and
can some of them be avoided?

« Is it possible to assign values directly to arithmetic vari-
ables, independent of literal-level decision information,
within a CDCL-style framework?

o Can propagation be performed on arithmetic variables,
analogous to unit propagation in SAT solving, and is
this new propagation method effective for guiding assign-
ments and detecting conflicts?

B. Contributions

To address the questions above, this paper proposes, for
the first time, a new algorithm that incorporates clause-level
information.

First, we analyze the conflict problems that arise in NLSAT
and categorize them into two types. As described in [22],
each clause narrows the feasible sef!] of an arithmetic variable.
This technique has previously been used to enlarge the oper-
ation choices in local search algorithms, but it has not been
considered in complete methods like NLSAT. Consequently,

IAlso called the satisfying domain in [22].



arithmetic variables can sometimes be narrowed to an empty
search space, causing conflicts. We describe this type of prob-
lem from the perspective of interval arithmetic and propose a
solution based on the computation of feasible intervals. The
clause-level feasible-set idea extends the spirit of NLSAT by
directly guiding assignments to arithmetic variables.

Second, we introduce an incremental computation of the
clause-level feasible set, followed by the definition of clause-
level propagation. In SAT solvers, unit propagation is an ef-
fective tool to deduce assignments and detect conflict clauses.
Analogously, clause-level propagation is employed to fix a
possible witness for an arithmetic variable or to quickly detect
empty feasible-set cases.

Finally, we present the structure and implementation de-
tails of our solver, clauseSMT. Although dynamic variable
ordering has been discussed in [23]], SMT-RAT [24] solves
fewer instances due to the lack of efficient data structures. We
present techniques and data structures inspired by SAT solving.
Our implementation extends the NLSAT module of the Z3
solver [25]], relying on existing libraries in Z3 for mathematical
operations such as root isolation, polynomial operations, and
algebraic number representation. Experiments on the SMT-
LIB benchmark demonstrate the effectiveness of our proposed
techniques, including the look-ahead mechanism and clause-
level propagation. The results show that clauseSMT solves
the most satisfiable instances and is highly competitive against
other SMT solvers overall.

In summary, this paper makes the following contributions:

o We propose a new MCSAT-based method for nonlinear
arithmetic, introducing clause-level feasible sets to avoid
conflicts caused by literal-level decisions.

o We define clause-level propagation, which quickly de-
tects conflict cases or fixes values for arithmetic variables.

o We integrate the propagation method into the VSIDS
branching heuristic, guiding the search process and re-
ducing semantic stages.

o We implement these ideas in our solver clauseSMT
and conduct experiments on SMT-LIB benchmarks to
demonstrate the effectiveness of our approach.

C. Structure of the Paper

The paper is organized as follows. In Section [[I, we in-
troduce SMT problems over nonlinear real arithmetic and
review the traditional complete method NLSAT. Section [II]
analyzes the conflicts that occur in the NLSAT algorithm. In
Section we present a feasible-set based look-ahead mech-
anism. Building on the concept of clause-level information,
Section [V| introduces the clause-level propagation algorithm
and a new branching heuristic. Section [VI]discusses the details
of implementation. We compare our solver with other SMT
solvers and perform an ablation study in Section Related
work on solving non-linear real arithmetic is reviewed in
Section Finally, Section concludes the paper and
outlines potential directions for future research.

D. Artifact Availability

To facilitate reproducibility and further research, we release
the full implementation of ClauseSMT, together with all
experimental data and scripts, as an open-source artifact. The
artifact is publicly available on a GitHub reposito enabling
researchers to replicate our experiments and investigate the
solver’s performance on the QF_NRA benchmark.

II. PRELIMINARIES

This section introduces the basic definitions of SMT prob-
lems over nonlinear real arithmetic, followed by a review of
the NLSAT algorithm. In addition, we present the computation
of clause-level feasible sets.

A. Syntax of SMT(QF_NRA)

The syntax of SMT constraints over nonlinear real arith-
metic is defined as follows:

zeV
beB

arithmetic variables:

boolean variables:

polynomials: p:=x|c|p+p|p-p
atoms: a:=b|p<0|p>0|p=0
literals: [:=a | —a
formulas: @ :=1| Ve | pAp

An atom is either a Boolean atom, defined by a Boolean
variable b € B, or an arithmetic atom, defined by a (non-
strict) inequality or equality of a polynomial over V. A literal
is either an atom or its negation. A clause is a disjunction of
literals, and all input formulas are transformed into conjunctive
normal form (CNF), i.e., a conjunction of clauses. SMT(NRA)
refers to the set of formulas over the theory of nonlinear real
arithmetic.

For the semantics, we define an assignment o as a mapping
from variables to values.

e A Boolean assignment maps Boolean variables to truth
values, denoted as apol : b — {T,L}.

e An arithmetic assignment maps real variables to real
numbers, denoted as ey : T — R.

A full assignment maps all Boolean and real variables, while
a partial assignment only covers a subset. Under a given
assignment, each atom is evaluated as follows:

1) true, if the assignment satisfies it;

2) false, if the assignment violates it;

3) undefined or unevaluated, if it contains variables not yet

assigned.

A full assignment that makes all clauses true is called a
model (or solution) of the formula, certifying its satisfiability.
The SMT(QF_NRA) problem is to decide whether such a
model exists for a given input formula, or to prove that none
does.

Zhttps://github.com/yogurt-shadow/ClauseSMT_ASE2025
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B. Feasible Set

For nonlinear real arithmetic constraints, a key technique
for determining the possible values of arithmetic variables is
root isolation. Given an arithmetic atom of the form

p{<,>2,=,>,<}0,

if exactly one variable v remains unassigned under the current
assignment, we can compute the set of values of v that satisfy
the atom. We call this set the feasible set.

For higher-order polynomial constraints, feasible sets are
usually computed via root isolation, which determines the
roots of the polynomial. These roots partition the real line
into interval Each interval preserves a fixed truth value of
the atom, and the union of all satisfying intervals forms the
overall feasible set.

For negated literals, the feasible set is simply the comple-
ment of the feasible set of the corresponding positive atom.
By restricting the variable v to any value in the feasible set,
the atom is guaranteed to be satisﬁecﬂ

Besides the literal level, the notion of a feasible set can also
be extended to the clause level, where it represents the set of
values that make the entire clause satisfied. In this work, we
focus on the case where exactly one arithmetic variable in the
clause is left unassigned; we call such a clause a univariate
clause.

Definition 1 (Feasible Set). Let [ be a literal, x an arithmetic
variable, and o an assignment that maps all variables in [
except x. The feasible set (resp. infeasible set) of [ is the union
of intervals over R such that | is satisfied (resp. unsatisfied)
when x is assigned any value from the interval.

Similarly, let ¢ be a clause, x an arithmetic variable, and
« an assignment that maps all variables in c except x. The
feasible set (resp. infeasible set) of c is the set of all values of
x that make c satisfied (resp. unsatisfied). It can be computed
by taking the union (resp. intersection) of the feasible sets
(resp. infeasible sets) of all literals in c.

Example [1| illustrates the construction of a feasible set.

Example 1. Consider an assignment « := {b— L,z — 0}.
The feasible set of the clause

bV (y+az>0)V(y*>2)
(70077\/5) U (0,00),

since these are the values of y that satisfy the clause given
the current assignment.

C. Original NLSAT Algorithm

NLSAT is the core algorithm for nonlinear real arithmetic
(NRA) within the Z3 solver [25]. It handles both boolean and
arithmetic variables directly, integrating theory reasoning into

3In the terminology of cylindrical algebraic decomposition, such intervals
are also called cells.

4The feasible set may also be empty or cover the entire real line, meaning
the atom is always unsatisfiable or always satisfied, respectively.

the CDCL framework. Specifically, NLSAT extends traditional
unit propagation and boolean decisions to real-variable prop-
agation (R-propagation) and semantic decisions.

To select an appropriate value for an arithmetic vari-
able, NLSAT incrementally updates its feasible-set during the
search. Let the current feasible-set be curr_set, the feasible-
set of a literal it be lit_set, and real-variable propagation
take effect under the following circumstances:

« lit_set is empty: the literal is propagated as false, since
no value can satisfy it.

« lit_set is full: the literal is propagated as true, since any
value satisfies it.

o curr_set is a subset of lit_set: the literal is propagated
as true, because the current feasible-set already satisfies
it.

o curr_set has no intersection with lit_set: the literal
is propagated as false, because all values in the current
feasible-set violate the literal.

When processing a clause containing both boolean and arith-
metic variables, NLSAT first applies propagation and evalua-
tion to detect evaluated literals. If one literal is true, the clause
is skipped; otherwise, NLSAT decides the first unevaluated
literal and updates the feasible-set accordingly. Algorithm [I]
presents the detailed processing steps in NLSAT.

For conflict analysis, NLSAT employs cylindrical algebraic
decomposition (CAD) as an explanation tool. Using model-
based projection, it identifies the conflict cell and generates a
lemma to prevent the solver from revisiting the same conflict
in the future. Algorithm [2| presents the complete NLSAT
procedure.

III. CONFLICTS DURING THE NLSAT ALGORITHM

In this section, we analyze the sources of conflicts in
NLSAT algorithms. Broadly, these conflicts can be categorized
into two types: those caused by semantic decisions and those
caused by literal decisions.

A. Conflicts Caused by Semantic Decisions

In SAT solving, conflicts are typically caused by literal (i.e.,
boolean variable) decisions. For a satisfiable instance, a SAT
solver can avoid conflicts if it uses a perfect phase selection
strategy (i.e., assigns variables correctly to true or false). For
unsatisfiable instances, conflicts are unavoidable regardless of
the phase choices. In both cases, when CDCL detects a conflict
due to incorrect decision values, conflict analysis is invoked
to generate a new lemma that forces a change in the previous
assignment.

Similarly, in the NLSAT algorithm for SMT solving, con-
flicts can arise from incorrect semantic decisions, i.e., selecting
a value from a given interval. As discussed in [26], the
search space of nonlinear arithmetic is partitioned into sign-
invariant cells. However, in systematic solvers like NLSAT,
the current cell being explored cannot be predicted in advance,
and therefore conflicts may occur. For unsatisfiable instances,
every cell in the search space is inconsistent with at least



Algorithm 1: Clause Processing in NLSAT

Algorithm 2: Original NLSAT

Input : A set of clauses F'
Output: Conflict clause conf_cls, or No Conflict
1 for each clause c € I' do

2 for each literal | € c do

3 lit_set <— compute feasible-set of [;

4 val < real propagate [ using lit_set;

5 if val = T then

6 break;
// clause is satisfied, skip
remaining literals

7 if val = L then

8 continue;
// literal unsatisfied, check

next literal
9 if exist satisfied literal in c then
10 continue;
// clause satisfied, check next

clause

1 else if exactly one literal undefined in c then

12 L unit propagate the literal;

13 else if rwo or more literals undefined in c then

14 L decide the first undefined literal;

15 else

// all literals are unsatisfied
16 L return c // conflict detected

17 return No Conflict,

v

x
Il
N

Fig. 1. Demo of a conflict caused by a semantics decision.

one polynomial constraint, making conflicts unavoidable. A
demonstration is provided in Example [2]

Example 2. Consider the formula y?> + x +1 < 0 with the
variable order {x,y}. As depicted in Figure IZl if we decide
x — 2, the satisfying region (shaded area) does not intersect
the line x = 2, resulting in a conflict. This conflict is caused
by an incorrect semantic decision for variable x and could be
avoided by choosing a correct value, for instance x — —2.

Input : A formula F'
Output: SAT or UNSAT
1 while true do

2 v < select next variable according to branching
heuristic;

3 conf_cls < process clauses univariate to v
(Algorithm ;

4 if conf_cls is empty then
// No conflict detected

5 if v is boolean then
6 L perform boolean decision;
7 else if v is arithmetic then
8 L perform semantic decision;
9 else
10 return SAT // all variables
assigned consistently
1 else
// Conflict detected
12 new_lemma < conflict analysis via CAD;
13 if new_lemma is empty then
14 return UNSAT // formula is
unsatisfiable
15 else
16 L backtrack;

B. Conflicts Caused by Literal Decisions

A key technique in NLSAT is processing clauses that are
univariate with respect to the current arithmetic variable. In
a CDCL-style systematic search, literals are assigned either
through unit propagation for unit clauses (i.e., clauses with
only one unassigned literal) or via decisions for clauses with
multiple unassigned literals. However, the literal decision
mechanism in NLSAT has received relatively little attention.
Improper literal decisions may introduce additional conflicts.
We illustrate this situation in Example [3]

Example 3. Consider the following three clauses:

01:y2—|—x—2§0\/y2—x—2§O,

c:rx+y=-3, cz:x—y=3.

As illustrated in Figure |2| the purple area satisfies both
polynomials in c1, while the red and blue areas satisfy only
y? +2—2<0andy*>—x—2 <0, respectively. The straight
lines represent the equality constraints in co and cs.

Suppose the SMT formula is {c1,c2}. The intersection
occurs only in the red area. If the formula is {c1,c3}, the
intersection is located only in the blue area. When NLSAT
processes a clause with multiple unassigned literals such as
c1, it decides on one literal and branches the search space into
either the red+purple or blue+purple areas. In this scenario,



Fig. 2. Demo of a conflict caused by a literal decision.

there is a 50% chance of missing the equality line and
encountering a conflict.

However, the feasible-set of ci (i.e., the union of red, blue,
and purple areas) has a nonempty intersection with both lines,
indicating that both formulas {c1,ca} and {c1,c3} are indeed
satisfiable.

Here comes a new problem in this circumstance. Is it pos-
sible to avoid conflicts with a better literal-decision heuristic?
If so, how can this be achieved? The key idea is to view
the literal-decision problem as a satisfiability problem over
intervals. Example [4] illustrates this idea.

Example 4. Suppose the current assignment is o := {x — 0}.
Clauses univariate with respect to y are shown as follows:

a: (y+2)y+4) <avy-2)(y—4) <z
2 (Y+dy+6)<zVv(y-1)(y-5 <=

By calculating the feasible-set of each literal, the interval view
of the clauses is:

e i [—4,-2] Vv [2,4]
o i [—6,—=5] V [1,5]

Then the problem can be stated as: is there a value that
belongs to at least one interval of each clause?

IV. FEASIBLE-SET BASED LOOK-AHEAD MECHANISM

In this section, we incorporate the clause-level feasible-set
into the NLSAT algorithm and design a look-ahead mecha-
nism.

A. Look-Ahead Before Processing Clauses

We first extend the definition of feasible-set to a set of
clauses.

Definition 2. Given a clause set C'S, an arithmetic variable
x, and an assignment that maps all variables appearing in any
clause of C'S except x, the feasible-set (resp. infeasible-set) is
the set of values for x that satisfy (resp. unsatisfy) all clauses

in C'S. Formally, the feasible-set of C'S can be computed as
the intersection of the feasible-sets of individual clauses:

feasible_set(CS) = ﬂ feasible_set(c)
ceCS
By using the feasible-set of a clause set, we can more
directly determine the search space of an arithmetic variable.
Specifically, when the feasible-set is non-empty, assigning any
value from the set to the variable (i.e., a semantics decision)
guarantees progress in the search, allowing the algorithm to
proceed to the next stage. Conversely, when the feasible-set is
empty, no choice of value can avoid inconsistency.
We now answer the question posed in Section |lII| with the
following formal definition:

Definition 3. Given a clause set, if its feasible-set is non-
empty, then, in theory, conflicts can be avoided by choosing
appropriate literal assignments; we call this a path case. Con-
versely, if the feasible-set is empty, conflicts cannot be avoided
through literal decisions (caused by semantic decisions); we
call this a block case. Examples 5| and [0 illustrate a path case
and a block case, respectively.

Example 5.
er:[~4, -2V 2,41 = {[-4,-2] U [2,4]},
¢z :[—6, =5 V1, 5] — {[-6,—5] U [1,5]} } /\ — {[2,4]}

This example shows a path case, since the clauses can be
satisfied by deciding literals in the green boxes.

Example 6.
ey :[-4, 21V [2, 4] — {[-4,—-2] U [2,4]}, /\ Ly
co :[-6, -5] V [5, 6] — {[—6,—5] U [5,6]}

This example shows a block case: the clauses cannot be
satisfied regardless of which literals we decide.

The feasible-set computation provides a view of the cur-
rently consistent search space. However, in a CDCL-style
algorithm, literals still need to be assigned to enable future
conflict analysis. This raises the following question: how
should we decide literals once we already know it is a path
case (i.e., when the green boxes in Example [5] are identified)?

In our approach, we employ a look-ahead mechanism that
first selects a pre-appointed value from the feasible-set. This
pre-appointed value is then used to guide the search for a
consistent decision path. The detailed procedure is presented
in Algorithm [3]

The updated algorithm introduces the additional condition
that the feasible-set of the current literal must contain the
pre-appointed value. This ensures that the feasible-sets of
all decided literals during the processing procedure intersect
at the clause-set level, allowing the arithmetic variable to
be assigned the pre-appointed value. In the block case, the
processing algorithm behaves identically to NLSAT, eventually
triggering the resolve procedure to revise previous arithmetic
assignments.



Algorithm 3: Deciding Literals Using Pre-Appointed
Value
Input

: A set of clauses F', pre-appointed value val
selected from feasible-set
Output: Decided literals [its

1 lits «

2 for each clause c € F' do

3 path_literal < undefined;

4 for each literal | € c do

5 lit_set < compute feasible-set of [;

6 val_lit < real propagate literal [;

7 if val_lit = T then

8 break // clause already
satisfied

9 if val_lit = 1 then

10 continue // literal unsatisfied,
check next literal

11 if lit_set contains val then

12 path_literal <1 // decide
satisfiable literal under
pre—appointed value

13 if only one literal undefined in c then

14 L unit propagate the literal;

15 else if path_literal is defined then

16 L lits < lits U {path_literal};

17 return lits;

B. Look-Ahead After Conflict Analysis

In addition to processing clauses with multiple literals,
our decision-making algorithm remains effective in conjunc-
tion with cylindrical algebraic decomposition (CAD)-based
explanation. CAD projects conflict polynomials to learn a
lemma that eliminates a sign-invariant cell. The learned lemma
includes extended polynomial constraints, referred to as root
atoms, of the form:

7-7:n))7

where y is the last assigned variable, ~€ {=,#, <, >, <, >},
and p is a polynomial generated via model-based projection,
involving previously assigned variables zi,...,z,. Specifi-
cally, when the last assigned variable y lies between two
polynomial constraints, multiple root atoms may be generated
in the learned lemma, making the choice of literal assignment
particularly critical.

y ~ root;(p(zxy, ...

Example 7
el V(2,8 c1: [=7,—2] \/E
[ 10] V6,51 cp:[—11,-10]V [-6, 5]
learned ﬁ 17, 81 learned : @ V(7,8

Before learning a new lemma, the left column highlights
a possible path in the green boxes. After incorporating the

Algorithm 4: Process Clauses After a New Lemma

Input: A new lemma [emma, arithmetic variable v
1 lemma_feasible_set < compute feasible-set of
clause(lemma);
2 feasible_set[v] <
feasible_set[v] N lemma_feasible_set;
3 if feasible_set[v] is empry then
// Block case: no consistent
assignment possible for v
// Proceed as in original NLSAT
(Algorithm )
4 original process clauses;

5 else

// Path case: a consistent
assignment exists for w

6 val + value_selection(feasible_set[v]);

// Call Algorithm to decide
literals using the pre-appointed
value

7 deciding literals using pre-appointed value (val);

new lemma, the updated feasible-set may become inconsistent
with any literal in the lemma, resulting in a conflict. The
right column shows a new feasible path after incrementally
processing the lemma.

Look-ahead algorithm after conflict analysis is similar to
the main search part, as shown in Algorithm E} The main
difference is the incremental computation of decision cases by
considering only the feasible-set of the new lemma. We use
a vector of intervals to cache the previous feasible sets. After
calculating the clause-level feasible-set, we must reprocess
the clauses for the path case and find a new decision path.
Because the newly generated lemma adds a new constraint
on the arithmetic variable, the current decision path might be
blocked as shown in Example

V. CLAUSE-LEVEL PROPAGATION

Following the idea of using a clause-level feasible-set, this
section introduces a new kind of propagation called clause-
level propagation. The idea is inspired by unit propagation (or
literal propagation) in SAT solving. In a boolean satisfaction
problem, boolean variables can be unit propagated to assign
a value, which allows the solver to detect conflicts as early
as possible. However, most existing complete algorithms do
not perform arithmetic propagation for quick assignment or
conflict detection.

We now formally define clause-level propagation.

Definition 4. Given a clause ¢, an arithmetic variable x, and
an assignment « that assigns all variables appearing in c
except z, clause-level propagation on x is the computation of
the feasible-set of the clause c, which serves to narrow the
feasible-set of the variable x.



The main difference between arithmetic and boolean prob-
lems lies in the structure of their search spaces. In SAT solving,
unit propagation assigns boolean variables to either true or
false. In other words, unit propagation always prunes the
search space of a boolean variable by half, effectively guiding
the search forward, since there are only two possible values.

By contrast, in arithmetic problems, a clause may only elim-
inate part of the real-valued domain of a variable, contracting
the search space without fully deciding the variable. In this
section, we introduce the clause-level propagation algorithm,
which computes feasible-sets for arithmetic variables, and then
show how to use this propagation information to guide the
search by selecting the next branching variable.

A. Clause-Level Propagation Method

In SAT solving, unit propagation is performed after variable
assignments. In our algorithm, we incrementally compute the
feasible-set of a clause whenever it becomes univariate with
respect to an arithmetic variableﬂ

A newly generated univariate clause imposes an additional
constraint on the arithmetic variable, pruning its search space
by taking the intersection with the existing feasible-set. Unlike
boolean search spaces, arithmetic search spaces may only be
partially reduced. We categorize clause-level propagation into
three cases, illustrated in Example [8}

o Block case: The clause-level feasible-set is empty.

« Fixed case: The clause-level feasible-set contains exactly
one real number, e.g., [2,2].

o Other case: The clause-level feasible-set is narrowed but
neither empty nor a single value.

This propagation information is subsequently used to guide

the branching heuristic. The algorithmic details are shown in
Algorithm [3]

Example 8. An example is shown in Figure When a
variable x is assigned 0, three clauses become univariate to
other variables {z,y, k}. These three clauses add three new
constraints on arithmetic variables, calculated as

{(_007_2] U [2a6]}7 {[272}}a 0.

These feasible sets indicate that variables are feasible, fixed,
or blocked.

B. Propagation-Based Branching Heuristic

In SAT solving, after unit propagation, an unassigned
boolean variable is either propagated to a value or a con-
flict clause is detected immediately. Similarly, for arithmetic
variables, the clause-level feasible-set allows us to identify
propagation and conflict cases, corresponding to the fixed and
blocked cases introduced above.

However, unlike boolean unit propagation, clause-level con-
flicts for arithmetic variables cannot directly return a conflict
clause in NLSAT; this task remains the responsibility of the

SThis occurs not only after assigning an arithmetic variable, but also after
assigning a boolean variable. Whenever a clause is arithmetically univariate,
its feasible-set is updated.

Algorithm 5: Clause-Level Propagation

Input: Clause set F', current feasible sets of arithmetic

variables
1 for each clause cls € F' do
2 if cls is univariate to an arithmetic variable v then
3 cls_feasible_set <— compute_feasible_set(cls);
4 feasible_set[v] +

feasible_set[v] N cls_feasible_set;
// Categorize propagation result

5 if feasible_set[v] is empty then

6 blocked_vars < blocked_vars U {v} ;
// Block case: conflict
unavoidable

7 else if feasible_set[v] is a single value then

8 fized_vars < fized_vars U {v} ;
// Fixed case: value
determined

9 else
// Other case: search space

narrowed but not fixed

Yrez>4avy—22<6 > {(—o0,—2]U[2,6]}

A,

0 z+ax>2Vv22<4 >

{[2.2}

> B ke —z< -2 > {1}

Fig. 3. Demo of clause-level propagation for y (normal case), z (fixed case)
and k (block case).

clause processing procedure. Therefore, we record information
about fixed and blocked variables and prioritize them in the
branching heuristic, ensuring that the search addresses these
critical variables as early as possible.

For variables in the normal case (neither fixed nor blocked),
we adopt the Variable State Independent Decaying Sum
(VSIDS) heuristic [27], as suggested in [23], [28]]. The full
procedure is outlined in Algorithm [} Details on our im-
plementation of dynamic variable ordering are discussed in
Section [V1l

VI. IMPLEMENTATION

All of the above algorithms are incorporated into our
new solver, clauseSMT. We describe the solver in detail,
including an extended version of conflict analysis and an im-
plementation of the dynamic variable ordering framework. The
overall structure of clauseSMT is illustrated in Figure 4} and



Algorithm 6: Propagation-Based Branching Heuristic

Output: A variable v to branch on
1 // Prioritize blocked variables
(potential conflicts)
if blocked_vars # () then
3 L v < select_from(blocked_vars);

first

(5]

4 // Next, consider fixed variables
(propagate value)

else if fized_vars # () then

6 L v < select_from(fized_vars);

wm

// Otherwise, use VSIDS heuristic for
normal variables

else

8 L v < vsids_select();

=

9 return v

Algorithm 7: ClauseSMT

Input : A formula F
Output: SAT or UNSAT
1 while frue do

2 clause-level propagation(F’);
// call Algorithm
3 variable v < branching heuristic;
// call Algorithm EI
4 if v’s feasible-set is empty then
5 new_lemma < Resolve (Conflict Analysis);
6 if new_lemma is empty then
7 | return UNSAT;
8 else
9 Process Clauses after a new
lemma(new_lemma);
// call Algorithm EI
10 else
11 val < select from feasible-set;
12 Process Clauses using pre-appointed value val;
// call Algorithm
13 assign v < val;
14 if all variables are assigned then
15 L return SAT:;

Algorithm [7| presents the integrated heuristics implemented in
the solver.

A. Resolve

Although the look-ahead based processing algorithm is
introduced in the previous section, practical implementation
involves more complex cases. As discussed, conflicts in NL-
SAT can be categorized into two types:

1) Literal-decision conflicts ]

SFor the look-ahead mechanism, this occurs only in block cases.

SMT Formula
)

Blocked

Propagation Branch Blocked Var

SAT

All assigned

Otherwise Empty Lemma

Compute
Feasible-Set

Resolve

Not Empty
h
wi Value
Infeasible S
. Feasible
Process Clauses with o tic Decisi
i » ecision
Appointed Value

Fig. 4. Overall Structure of clauseSMT.

For these, we keep the resolve algorithm the same as
in the original NLSAT. The search engine backtracks
to the highest decision level of the new lemma and
attempts to unit propagate the negation of previously
decided literals. In other words, this type of conflict
occurs purely at the literal level.
2) Incremental clause conflicts

For literal-decision conflicts considering an incremental
clause (i.e., a newly learned lemma), we detect these by
recalculating the decision path. Any literals that were
decided prior to this stage must be reset to allow proper
propagation according to the updated feasible sets.

To better manage the backtracking process, we introduce
several new types of trails, commonly used in the NLSAT
algorithm:

« path_finder: Whenever the feasible-set at the current
stage is non-empty, a path exists and this trail is recorded.

o block_finder: When the current stage is blocked, this trail
is recorded.

o clause_feasible_updated: Whenever the feasible-set of a
clause for an arithmetic variable is updated, this trail is
recorded.

B. Dynamic Variable Ordering Framework

1) Watched Variables: We implement two watched vari-
ables, inspired by the two-watched-literals scheme, to detect
univariate clauses and lemmas. Each clause or lemma is
watched by two variables (boolean or arithmetic) appearing
in it. Watchers are updated whenever one of them is assigned.
The cases are as follows:



o There exists a third variable unassigned: we replace the
assigned watcher with this variable.

« No other variable is unassigned: this clause is univariate
to the remaining unassigned watcher.

o Both watchers are assigned: no action is taken.

Whenever a univariate clause is detected, its feasible-set is
updated eagerly, which helps the search engine gather more
clause-level information.

2) Projection Order: A common challenge in nonlinear
arithmetic is the strict variable-order relationship of root
atoms, which are generated by model-based projection. Given
a polynomial set ps and a projection order {vy, v, ..., vk},
each time the projection method eliminates a variable, it
generates a root atom corresponding to that variable.

As discussed in [23]], in most cases, the variable not appear-
ing in the polynomial should be assigned last. Specifically,
when all atoms are in root format, the projection order should
exactly be the inverse of the assignment order, which is how
it is implemented in our solver.

3) Branching Heuristic: VSIDS 1is a particularly effective
branching heuristic. Each time a conflict is detected, we
increase the activities of the involved variables of all types.
Following the design in [23|], we employ several branching
heuristics and use the uniform heuristic to compare the
activity of boolean and arithmetic variables on the same scale.

4) Parameter Settings: Values of the tunable parameters are
summarized in Table [

Symbol | Description | Value

arith_decay Decay factor for arithmetic vari- 0.95
ables

bool_decay Decay factor for boolean vari- 0.95
ables

arith_bump Incremental amount of arith- 1
metic activity

bool_bump Incremental amount of boolean 1
activity

lemma_conf Initial conflict count for deleting 100
lemmas

lemma_conf_inc| Incremental factor for lemma 1.5
conflicts

TABLE 1

TUNABLE PARAMETERS

C. Shortcut for UNSAT Instances

For the block case discussed in Section we process
blocked clauses the same way as in NLSAT. As concluded
earlier, conflicts in this scenario occur because previous vari-
ables (arithmetic or boolean) were assigned incorrect values.
In our implementation, we introduce a shortcut mechanism to
directly return UNSAT if the blocked clauses involve only a
single variable. In this situation, there are no previous stages,
and thus the instance is guaranteed to be unsatisfiable.

VII. EVALUATION

In this section, we compare our algorithm with several
existing solvers, including Z3 (version 4.13.1) [25], CVC5

(version 1.0.2) [29], and YICES2 (version 2.6.2) [30]. We
also present an ablation study to analyze the impact of various
improvements.

A. Experiment Preliminaries

The standard benchmark for evaluating SMT solvers is
SMT—LI The full benchmark for the QF_NRA theory
consists of 12,134 instances, originating from various applica-
tions, including nonlinear hybrid automata, ranking function
generation for program analysis, and other mathematical prob-
lems. Most instances are labeled as SAT or UNSAT, though
some remain UNKNOWN. It should be noted that instances
from SMT-LIB exhibit significant variation in clause numbers,
literal counts, and polynomial degrees. Our experiments are
conducted on a server equipped with an Intel Xeon Platinum
8153 processor running at 2.00 GHz. Each instance is limited
to a maximum runtime of 1,200 seconds, consistent with the
SMT-COMP settings.

B. RQI: Comparison with mainstream Solvers

We compare our algorithm with other SMT solvers in
Table When evaluating our approach using Z3, we dis-
able all other tactics such as CDCL(T) and any incomplete
algorithms. The solvers Z3, CVCS5, and YICES2 are tested
without modifications, each employing its portfolio of different
algorithms. We also evaluate the original NLSAT solver by
disabling all other tactics.

Our algorithm demonstrates competitive performance com-
pared to state-of-the-art solvers such as Z3 and CVCS. In
particular, clauseSMT solves the largest number of satisfiable
instances and ranks third for unsatisfiable ones.

Figure [3] presents pairwise scatter plots of solving times,
where each point’s x-coordinate corresponds to clauseSMT
and the y-coordinate to a competing solver. Points below the
diagonal (y = x) indicate instances where clauseSMT is faster.

The plots show that clauseSMT efficiently handles satisfi-
able instances (blue points), often outperforming mainstream
solvers, consistent with the results in Table @ The compar-
ison with the original NLSAT baseline further highlights the
benefits of our look-ahead and arithmetic-aware propagation
techniques, which reduce solving time on most instances.

1) Comparison with CVC5: CVCS solves the largest num-
ber of instances overall, particularly excelling in unsatisfiable
cases due to incomplete techniques such as interval constraint
propagation and incremental linearization. Notably, the MBO
category [31f], which contains single clauses with very high
degrees, remains challenging for CAD-based algorithms.

2) Comparison with Original NLSAT: Our solver performs
slightly worse on instances with high-degree polynomials,
where feasible-set computations are relatively costly. Never-
theless, it demonstrates significant gains in LassoRanker and
Hycomp, which contain thousands of instances with com-
plex feasible-set relationships. For LassoRanker, our solver
improves solved instances by 50%, and overall it solves almost
300 more instances compared to the original NLSAT.

https://smt-lib.org/


https://smt-lib.org/

Category #inst 73 YICES2 | CVC5 NLSAT Ours
SAT 0 0 0 0 0
20161105-Sturm-MBO 405 UNSAT 124 285 285 44 39
SOLVED 124 285 285 44 39
SAT 2 0 0 2 2
20161105-Sturm-MGC 9 UNSAT 7 0 0 7 6
SOLVED 9 0 0 9 8
SAT 2 0 1 1 2
20170501-Heizmann 69 UNSAT 1 12 9 10 19
SOLVED 3 12 10 11 21
SAT 93 91 89 93 92
20180501-Economics-Mulligan 135 UNSAT 39 39 35 41 41
SOLVED 132 130 124 134 131
SAT 56 52 50 58 36
2019-ezsmt 63 UNSAT 2 2 2 2 2
SOLVED 58 54 52 60 38
SAT 234 235 199 235 234
20200911-Pine 245 UNSAT 6 8 5 7 5
SOLVED 240 243 204 242 239
SAT 110 99 91 110 98
20211101-Geogebra 112 UNSAT 0 0 0 0 0
SOLVED 110 99 91 110 98
SAT 69 70 62 68 70
20220314-Uncu 225 UNSAT 155 153 148 155 152
SOLVED 224 223 210 223 222
SAT 0 0 0 0 0
hong 20 UNSAT 8 20 20 12 14
SOLVED 8 20 20 12 14
SAT 307 227 225 244 291
hycomp 2752 UNSAT 2242 2201 2212 2088 2181
SOLVED | 2549 2428 2437 2332 2472
SAT 33 10 17 12 14
kissing 45 UNSAT 0 0 0 0 0
SOLVED 33 10 17 12 14
SAT 167 122 305 220 302
LassoRanker 821 UNSAT 151 260 470 174 311
SOLVED 318 382 775 394 613
SAT 4391 4369 4343 4391 4372
meti-tarski 7006 UNSAT 2605 2588 2581 2611 2588
SOLVED 6996 6957 6924 7002 | 6960
SAT 35 39 35 45 39
Ultimate Automizer 61 UNSAT 11 12 10 13 12
SOLVED 46 51 45 58 51
SAT 70 58 58 62 56
zankl 166 UNSAT 28 32 32 27 30
SOLVED 98 90 90 89 86
SAT 5569 5372 5475 5541 5608
Total 12134 UNSAT 5379 5612 5809 5191 5397
SOLVED 10948 10984 11284 10732 11005
TABLE I

SUMMARY OF RESULTS FOR ALL INSTANCES IN SMT-LIB (QF_NRA).
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Fig. 5. Run time comparison against CVCS5, Z3, YICES2 and nlsat (blue
points: satisfiable instances, red points: unsatisfiable instances).

C. RQ?2: Effectiveness of Look-Ahead Mechanism

To evaluate the impact of the look-ahead mechanism, we
implement several variants summarized in Table [[TI}

o Look-Ahead: Feasible-set based look-ahead on original
NLSAT with static variable order.

100k0k-Ahead vs. Random Decide [Conflict]

10000, LOOk-Ahead vs. NLSAT [Conflict]

8000

8000

6000

NLSAT

4000

2000|,

2000 4000 6000 8000 10000

0 2000 4000 6000 8000 10000
L d Look-Ahead

ook-Ahea

Fig. 6. Conflict counts of look-ahead NLSAT versus original and random
NLSAT (blue: satisfiable, red: unsatisfiable).

Category #inst Decide Lower Degree | Random Decide | Look-Ahead
20161105-Sturm-MBO 405 44 45 44
20161105-Sturm-MGC 9 9 9 9

20170501-Heizmann 69 11 5 7
20180501-Economics-Mulligan 135 134 134 134
2019-ezsmt 63 60 59 58
20200911-Pine 245 242 242 243
20211101-Geogebra 112 110 109 110
20220314-Uncu 225 223 224 224

hong 20 12 12 12
hycomp 2752 2332 2272 2388

kissing 45 12 14 15
LassoRanker 821 394 393 389
meti-tarski 7006 7002 7001 7002

Ultimate Automizer 61 58 44 57
zankl 166 89 89 87
Total 12134 10732 10652 10778

TABLE III
COMPARISON OF SOLVED INSTANCES FOR DIFFERENT LITERAL DECISION
MECHANISMS.

o Lower Degree: Decide literals with the lowest polyno-
mial degree (default NLSAT heuristic).

« Random Decide: Randomly select literals when process-
ing clauses.

Although the difference in solved instances across most
categories is small, our algorithm solves about 50 more
instances in the Hycomp category [18]], which contains nu-
merous nonlinear equalities. These instances often exhibit
literal path cases, highlighting the advantage of the look-ahead
mechanism.

The look-ahead mechanism proactively detects blocking
cases and mitigates conflicts during path exploration. Figure [6]
presents a scatter plot comparing the number of conflicts
incurred by the two algorithms, with the green line indicating
parity. For most instances, the look-ahead strategy reduces
conflicts, which—although not substantially impacting the
1200-second timeout—enables a more efficient systematic
search, particularly when handling clauses with multiple lit-
erals. Interestingly, a few instances exhibit increased conflicts
under the look-ahead mechanism. This arises from differences
in sampling intervals used to select arithmetic assignments:
the look-ahead algorithm employs the intersected interval for
witness selection, whereas the baseline relies on the literal
interval. Consequently, even with identical random seeds, the
arithmetic variables may be assigned different values, leading
to divergent subsequent search processes.

D. RQ3: Effectiveness of Clause-Level Propagation

To evaluate clause-level propagation, we compare three
solver versions: (1) original NLSAT with static variable order
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Fig. 7. Stage comparison of prop-VSIDS against VSIDS (blue points:
satisfiable instances, red points: unsatisfiable instances).

Category #inst Static | VSIDS | prop-VSIDS
20161105-Sturm-MBO 405 44 38 39
20161105-Sturm-MGC 9 9 6 8

20170501-Heizmann 69 7 20 21
20180501-Economics- 135 134 133 133
Mulligan

2019-ezsmt 63 58 30 38
20200911-Pine 245 243 239 239
20211101-Geogebra 112 110 101 98
20220314-Uncu 225 224 222 222
hong 20 12 11 11

hycomp 2752 2388 2426 2472
kissing 45 15 14 14
LassoRanker 821 389 571 613

meti-tarski 7006 7002 6974 6960
UltimateAutomizer 61 57 52 51
zankl 166 87 83 86

Total 12134 | 10778 10920 11005

TABLE IV
COMPARISON OF SOLVED INSTANCES FOR DIFFERENT BRANCHING
HEURISTICS.

based on degree (static), (2) dynamic NLSAT with VSIDS
(VSIDS), and (3) dynamic NLSAT with clause-level propaga-
tion (prop-VSIDS). Results are summarized in Table

The data show that VSIDS significantly improves perfor-
mance within the MCSAT framework. Incorporating clause-
level propagation further accelerates conflict detection and
increases the number of solved instances across most cat-
egories. In particular, prop-VSIDS excels on hycomp [18],
LassoRanker [16], [17], and meti-tarski [32], all of
which contain numerous arithmetic clauses prone to block
cases. Figure illustrates the reduction in search stages
(semantic decision steps) for prop-VSIDS compared to tradi-
tional VSIDS, showing that inconsistent branching choices are
detected earlier and overall stages are significantly reduced.

E. Threats to Validity

Correctness of implementation. Developing clauseSMT
required substantial effort. All comparisons with other solvers
were executed in the same environment. Results were carefully
verified, and satisfiable instances were validated to ensure
correctness.

Randomness. NLSAT uses internal randomness for semantic
decisions and clause/literal reordering. These mechanisms are
preserved in our solver, so they do not affect comparisons.
Additionally, a fully random literal-decision variant was tested

(and found uncompetitive, as discussed). Key metrics such as
conflict counts and search stages are reported via scatter plots.

VIII. RELATED WORK

SMT-solving methods can be categorized into complete
and incomplete approaches. Incomplete methods are fast
due to specialized techniques. Interval constraint propagation
(ICP) [33]], [34], as implemented in dReal [35]], is widely used
for quickly detecting unsatisfiable instances. Local search has
also been extended from SAT to arithmetic theories, including
integer [36]], [37]], linear/multilinear real [22], and nonlinear
real arithmetic [26]], [38]].

Complete methods dominate modern SMT solvers, per-
forming well on both satisfiable and unsatisfiable instances.
CDCL(T) [39]] and NLSAT [21] rely on CAD for theory rea-
soning [40], while MCSAT maintains high performance across
diverse applications using lighter explanation modules [41].
Recent work has focused on improving NLSAT efficiency, e.g.,
by optimizing variable projection orders [42]-[44], designing
innovative projection operators [45[], generating larger literal-
invariant cells [46]], [47]], and exploring dynamic branching
heuristics [23]].

IX. CONCLUSION

We presented a clause-level NLSAT algorithm for SMT
solving over nonlinear real arithmetic. We categorized con-
flicts in NLSAT and analyzed the challenges of literal de-
cisions faced by many CDCL-style algorithms. To address
these challenges, we introduced a feasible-set-based look-
ahead mechanism and clause-level propagation for branching.
Experimental results show that our solver is competitive with
mainstream solvers, demonstrating the effectiveness of the
proposed techniques.

In future work, we aim to develop a clause-level approach
for block cases, which are closely related to quantifier elimina-
tion. We anticipate that lighter alternatives to CAD may allow
connecting literals across clauses, revising previous decisions,
and constructing consistent decision paths.
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