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Abstract. Local search has recently been applied to SMT problems over
various arithmetic theories. Among these, nonlinear real arithmetic poses
special challenges due to its uncountable solution space and potential
need to solve higher-degree polynomials. As a consequence, existing work
on local search only considered fragments of the theory. In this work,
we analyze the difficulties and propose ways to address them, resulting
in an efficient search algorithm that covers the full theory of nonlinear
real arithmetic. In particular, we present two algorithmic improvements:
incremental computation of variable scores and temporary relaxation of
equality constraints. We also discuss choice of candidate moves and a
look-ahead mechanism in case when no critical moves are available. The
resulting implementation is competitive on satisfiable problem instances
against complete methods such as MCSAT in existing SMT solvers.
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1 Introduction

Satisfiability Modulo Theories (SMT) is the problem of determining the satisfia-
bility of a formula containing both logical operators and functions interpreted in
one or more custom theories [6]. Commonly considered theories include equality,
arithmetic, bit-vectors, arrays, and strings. After nearly two decades of develop-
ment, SMT has gained widespread applications in program verification, model
checking, planning, and many other areas.

The arithmetic theories can be divided according to the type of numbers
involved into integer and real theories, and according to the operations allowed
into difference logic, linear, and nonlinear theories. The case of (quantifier-
free) nonlinear real arithmetic (NRA) considers satisfiability of equalities and
inequalities involving polynomials of degree greater than one, and where the
arithmetic variables take on real values. It has applications in the analysis of
nonlinear hybrid automata [13], generating ranking functions for termination
analysis [22,28], constraint answer set programming [41,42], and even analysis
of biological networks [3]. Problem instances from many of these applications
are collected in the SMT-LIB benchmarks [5].
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Similar to the SAT case, methods for solving SMT problems can be roughly
divided into complete and incomplete methods. Complete methods are usu-
ally based on DPLL(T ) or close variants. They are able to both find solutions
and prove unsatisfiability. Incomplete methods, such as those based on local
search [24], explore the solution space heuristically, usually by changing the
assignment of one variable at a time, in an attempt to find a satisfying solution.
Local search methods are not able to prove unsatisfiability, but can have an
advantage over complete methods on some satisfiable instances.

Complete methods for the theory of nonlinear real arithmetic make crucial
use of cylindrical algebraic decomposition (CAD) [10], which permits deciding
the satisfiability of a conjunction of polynomial (in)equalities over real numbers.
This can then serve as the theory solver in DPLL(T ) [39]. An innovation over
DPLL(T ) for arithmetic theories is the MCSAT algorithm [25,34], which con-
structs models involving both boolean and arithmetic variables at the same time.
A nice overview of DPLL(T ) and MCSAT for nonlinear real arithmetic can be
found in Kremer’s thesis [27].

Exploration of applying local search to solve SMT problems over arith-
metic theories began only recently. The work [7] applied local search to the
theory of linear integer arithmetic. It introduced the concept of critical moves,
a change in one arithmetic variable that satisfies a previously unsatisfied clause.
The algorithm iteratively applies critical moves that most improves the score, a
weighted count of unsatisfied clauses. The presence of both boolean and arith-
metic variables are dealt with by alternately working in the integer mode and
the boolean mode, when assignments to only integer or boolean variables are
changed respectively. Switching between modes are performed after the number
of non-improving steps reaches a certain threshold.

Compared to linear integer arithmetic, the problem of nonlinear real arith-
metic held additional challenges for local search methods. Unlike integer theories,
there is an uncountable number of possible assignments to choose from, includ-
ing infinite number of choices in any finite interval. Unlike the linear case, there
is potential need to solve polynomials of degree greater than one, which is both
costly in time and may result in variable assignments that are irrational (i.e.
algebraic) numbers, causing a slow-down of the ensuing search process. It is also
possible that a nonlinear constraint cannot be satisfied by changing the value of
one variable alone, resulting in the lack of critical moves, so that other heuristics
are needed in such scenarios.

There has already been some work exploring local search for nonlinear real
arithmetic. However, largely due to the challenges listed above, none of the exist-
ing work covers the entirety of the theory. The work [29] considers the multilinear
case, where each variable appears with degree at most one in each polynomial
constraint. The work [31] considers problems where all equality constraints con-
tain at least one variable that is linear. In both of these works, the problem of
variable assignments to irrational values is avoided by either assuming linearity
in each variable, or by limiting higher-degree constraints to strict inequalities
only.
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1.1 Contributions

In this paper, we propose several improvements to the local search procedure,
aimed at addressing the challenges posed by nonlinear real arithmetic. This
results in an efficient local search algorithm for the entire NRA theory.

First, we present efficient data structures for caching and updating variable
scores used to determine the next critical move. Existing work on local search
for arithmetic theories can be thought of as an extension of the GSAT algo-
rithm [40] with adaptive weighting. It is well-known that efficient implementa-
tions of GSAT involve caching and updating of variable scores [24, Section 6.2].
For arithmetic theories, this is complicated by the fact that each variable is asso-
ciated not with one score, but with different scores for changing its assignment to
values in different intervals. Hence, current implementations of local search for
arithmetic theories recompute the score information for each variable at every
iteration, resulting in potential repeated computations. This is especially serious
for nonlinear arithmetic, where computations may involve costly root-finding for
higher-degree polynomials. We describe data structures maintaining boundaries
of score changes for each pair of clause and variable appearing in the clause,
which only need to be updated on an as-needed basis, and from which the full
score information can be quickly recovered.

Second, we address the problem posed by nonlinear equality constraints
between variables, which may force assignment to variables that are irrational
numbers. Rather than making such assignments directly, we propose to tem-
porarily relax such equalities into inequalities, e.g. changing the constraint p = 0
into p > −ε ∧ p < ε, and continue the local search process. If an (approxi-
mate) solution is found that satisfies the relaxed version of these constraints,
we restore the equalities to their original form, and try to find an exact solution
near the approximate solution. For this step, we try two different heuristic meth-
ods, respectively based on analyzing the structure of equations and local search
itself. While neither method is guaranteed theoretically (or in practice) to find
an exact nearby solution every time, the use of relaxation means local search
mainly works with rational assignments, significantly improving its efficiency in
those problem instances where irrational assignments may otherwise be needed.

Finally, we present alternative ways to deal with situations where no critical
move is available to satisfy a certain literal (that is, when the literal is stuck). We
first pick heuristically a variable appearing in the literal, and a set of candidate
moves for that variable. For each candidate move, we look ahead to see whether
that move will lead to the literal having critical moves on the next step. Such
moves are then preferred over the others.

The above ideas are implemented as a local search algorithm on top of the Z3
prover [33]. The implementation relies on the existing library of polynomials and
algebraic numbers in Z3, but is otherwise independent from its implementation
of MCSAT for nonlinear real arithmetic. We perform thorough experiments on
the SMT-LIB benchmarks, showing the effect of incremental computation of
variable scores and relaxation of equalities, and that the resulting local search
algorithm is competitive against complete algorithms in existing SMT solvers on
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the satisfiable instances. Especially, there is a large amount of complementarity
between the problems solved by local search and by the complete algorithms,
indicating major improvements can be obtained in a portfolio setting.

1.2 Related Work

Our work builds upon existing work applying local search to SMT over arith-
metic theories [7,29,31]. They will be reviewed in more detail in Sect. 2. Besides
arithmetic theories, there have also been earlier work applying local search to the
theory of bit-vectors [16,21,37]. In particular, the work [16] generalized the scor-
ing function to consider operators on bit-vectors, but the moves remain single-
bit flips. Later works [37,38] introduced propagation-based move selection and
essential inputs to prune the search.

The most commonly used framework for complete algorithms for nonlinear
real arithmetic is MCSAT, first proposed by Jovanovic and de Moura [25,34].
It improves upon the use of CAD within the DPLL(T ) framework by assign-
ing to both arithmetic and boolean variables during the search process. Recent
innovations in SMT solving for nonlinear arithmetic include variants to the appli-
cation of CAD [1], and alternative heuristics for choosing variable ordering [30].
Besides complete methods based on CAD, alternative methods based on lin-
earization [11], interval constraint propagation [26,44], and subtropical meth-
ods [15,35] are also explored. While these approaches alone do not achieve the
same level of overall performance as CAD and MCSAT, they may have advan-
tages in specific classes of problems, making them useful in a portfolio setting.

Also closely-related to our work are various methods for determining whether
a given region contains a solution to a set of (in)equality constraints, and their
applications to SMT solving. The work of Cimatti et al. [12] first uses global
optimization methods to find an initial solution, then uses topological methods
to determine whether an exact solution exists nearby. The work of Ni et al. [36]
also uses optimization to find a candidate solution, followed by general methods
for solving equations [32] to isolate an exact solution.

The work of Gao et al. [17,18] introduced the framework of δ-complete deci-
sion procedures, implemented in the dReal tool for solving SMT problems over
nonlinear formulas [19]. It can handle polynomials as well as trigonometric and
exponential functions. The δ-complete framework allows algorithms to either
return δ-sat or unsat, where the δ-sat case returns a solution for a δ-weakening
of the input formulas. This permits efficient numerical algorithms to be used, as
well as showing decidability for a wide range of problems. The concept of relax-
ation of constraints in our work is similar to δ-weakening, and we also use it
to increase efficiency of our algorithm. However, we still aim to return an exact
answer, by restoring the constraints to their original form and try to find an
exact solution near any approximate solution that is found.
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1.3 Structure of the Paper

We begin by defining the SMT problem over nonlinear real arithmetic, and
reviewing existing local search algorithms in Sect. 2. Section 3 presents incre-
mental computation of variable scores. Section 4 presents relaxation and restor-
ing of equality constraints. Section 5 discusses implementation choices, including
heuristic move selection and look-ahead mechanism for stuck literals. Section 6
compares with existing SMT solvers, and performs ablation study on each of
the proposed improvements. Finally, we conclude in Sect. 7 with a discussion of
potential future directions.

2 Preliminaries

In this section, we formally define SMT problems over nonlinear real arithmetic,
followed by a review of existing local search algorithms for arithmetic theories.

The syntax of a general SMT formula over nonlinear real arithmetic is as
follows:

p := x | c | p + p | p · p (polynomials)
a := b | p ≥ 0 | p ≤ 0 | p = 0 (atoms)
f := a | ¬f | f ∧ f | f ∨ f (formulas)

Here x is an arithmetic variable, c is a constant rational value, b is a boolean
variable. A literal is either an atom or its negation. A clause is a disjunction of
literals. In other words, we consider (in)equalities on polynomials with rational
coefficients1. In practice, we assume that input problem instances are given in
conjunctive normal form (CNF), that is as a collection of clauses to be satisfied.
Note that strict inequalities p �= 0, p < 0 and p > 0 can be represented as
¬(p = 0), ¬(p ≥ 0) and ¬(p ≤ 0), respectively. We allow problem instances to
contain boolean and arithmetic variables at the same time. We define boolean
literal and arithmetic literal to mean literal whose atom is a boolean variable
and a polynomial inequality, respectively.

A polynomial p is linear in some variable x if all terms of the polynomial have
degree at most one in x. Alternatively, p can be written in the form p1 · x + p2,
where p1, p2 do not contain x. A polynomial is multilinear if it is linear in each
of its variables.

Given a problem instance containing boolean variables bi (1 ≤ i ≤ m) and
arithmetic variables xj (1 ≤ j ≤ n), a complete assignment is a mapping from
each bi to {�,⊥} and each xj to R. We will only deal with complete assignments
in this paper, and hence sometimes call it assignment for short. A formula is

1 Our methods can be extended to handle polynomials with coefficients that are alge-
braic numbers. Alternatively, a coefficient ci that is an algebraic number can be
encoded as a variable xi satisfying some polynomial p(xi) = 0 together with interval
constraints. Hence we limit the discussion to rational coefficients in this paper.
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satisfied under an assignment if it evaluates to true under the standard inter-
pretation of boolean and arithmetic operators. An assignment is a solution to
a problem instance if it satisfies all its clauses. The SMT problem for nonlinear
real arithmetic is to determine whether a given problem instance is satisfiable
by some assignment.

Local search algorithms attempt to determine satisfiability of a problem
instance by searching in the space of complete assignments, usually by changing
the value of one variable at a time. In the SAT case, each move in local search
flips the assignment of one boolean variable. Which flip to make is determined by
factors such as the number of clauses that become satisfied/unsatisfied as result
of the flip, weight of the clauses, which variables are flipped recently, and so on.
For SMT over arithmetic theories, the analogous move changes the value of one
arithmetic variable, usually in order to make some clause become satisfied. Such
moves, called critical moves, are introduced in [7] for linear integer arithmetic.

For nonlinear real arithmetic, the basic procedure used to determine possible
moves is root isolation for polynomials. Given a polynomial p in a single vari-
able x (where here we allow the coefficients of p to be algebraic numbers), the
procedure computes the roots of the equation p(x) = 0, together with the sign
of the polynomial in each interval separated by the roots. Algebraic numbers
in the coefficients of p and in the output of root isolation are represented by
their minimal polynomials, together with intervals with rational endpoints that
bracket a root of that polynomial.

Given a complete assignment, and an arithmetic literal l involving variable
x, we can use root isolation to compute the set of values that assignment of x
may be moved to in order for l to be satisfied. This is done by substituting in
assignments to other variables in l, resulting in a polynomial containing only
variable x, then perform root isolation and check the value of l in each resulting
interval. The answer is given in terms of a set of intervals (which may contain
±∞ as one of the endpoints, and may be either open or closed at each endpoint).
We state the definitions precisely as follows.

Definition 1. Given a complete assignment, a literal l and a variable x, the
feasible set (resp. infeasible set) is the collection of intervals that the value of
x can be moved to in order for l to be satisfied (resp. unsatisfied). Likewise, we
define the feasible set (resp. infeasible set) of a clause with respect to a variable.
This is computed by taking the union (resp. intersection) of the feasible set (resp.
infeasible set) for each literal in the clause.

A critical move is defined to be a change in the assignment of some variable
x to a value that satisfies some previously unsatisfied clause. The basic local
search algorithm then performs critical moves at each iteration, using various
scoring metrics to determine which move is chosen next. Such moves can also
be interpreted as jumping between CAD cells as in [31]. An innovation in [31]
is that when no critical moves are available for some literal, moves that change
multiple variables at once along some straight line are also explored.

Scoring of critical moves is usually based on a weighted count of unsatis-
fied clauses. Adaptive weighting schemes assign a weight to each clause, reflect-
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ing its importance during the current search. Existing work on local search for
arithmetic theories mostly use a probabilistic version of the PAWS weighting
scheme [43]. This scheme is parameterized by a smoothing probability sp. When-
ever there is no moves available that improves the score, with probability 1− sp
the weight of each unsatisfied clause is increased by 1, and with probability sp
the weight of each satisfied clause with weight greater than 1 is decreased by
1. Then, the make-break score of each critical move equals the total weight of
clauses that become satisfied by the move, minus the total weight of clauses that
become unsatisfied by the move. A move is improving if its score is greater than
zero.

One key contribution of [29] is the introduction of make-break intervals. The
idea is that instead of considering only the (in)feasible intervals of a variable
x with respect to some clause, we combine the (in)feasible interval information
of x with respect to all clauses. This results in a partition of the real line into
intervals, with each interval associated to the make-break score for moving the
value of x into that interval. We illustrate this idea with the following example.

Example 1. Consider the set of clauses x2+y2 ≤ 1, x+y < 1 and x+z > 0. The
current assignment is x 
→ 1, y 
→ 1, z 
→ 1, and the current weight of clauses are
1, 3, 2, respectively. The make-break score for variable x with respect to each of
the clauses are:

– x2 + y2 ≤ 1 (unsatisfied): (−∞, 0) 
→ 0, [0, 0] 
→ 1, (0,∞) 
→ 0.
– x + y < 1 (unsatisfied): (−∞, 0) 
→ 3, [0,∞) 
→ 0.
– x + z > 0 (satisfied): (−∞,−1] 
→ −2, (−1,∞) 
→ 0.

Combining the above information, we obtain the following make-break intervals
and scores for x: (−∞,−1] 
→ 1, (−1, 0) 
→ 3, [0, 0] 
→ 1, (0,∞) 
→ 0. A preferred
move would be to change the value of x into the interval (−1, 0), satisfying the
clause x + y < 1 and leaving the status of the other clauses unchanged, with a
make-break score of 3.

If boolean variables are present, the make-break score of flipping each boolean
variable is defined in a similar way, as the total weight of clauses that become
satisfied by the flip, minus the total weight of clauses that become unsatisfied.

Algorithm 1 shows the structure of the basic local search procedure. Begin
by initializing the assignments to all variables (line 1). At each iteration, first
try to find a move with the largest make-break score. If the score is greater than
0 (the variable necessarily comes from an unsatisfied clause), then perform the
corresponding move (line 9). If no move has score greater than 0, it indicates that
we reached a local minimum. Update the clause weights according to the PAWS
scheme (line 11), and then try to make a move that makes a randomly chosen
clause satisfied (line 16). If that is also not possible after several tries, randomly
change the assignment of some variable in some unsatisfied clause according to
some heuristic (line 19). This continues until all clauses are satisfied (line 4) or
the time or step limit is reached (line 6).

There are possible variations in the choice between boolean and arithmetic
variables on line 7. In [7,29], the search is separated into modes where only
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Algorithm 1: Basic local search algorithm
Input : A set of clauses F
Output: An assignment of variables that satisfy F , or failure

1 Initialize assignment to variables;
2 while � do
3 if all clauses satisfied then
4 return success with assignment;

5 if time or step limit reached then
6 return failure;

7 var ,new value, score ← best move according to make-break score;
8 if score > 0 then
9 Perform move, assigning var to new value;

10 else
11 Update clause weight according to PAWS scheme;
12 repeat
13 cls ← random unsatisfied clause;
14 var ,new value, score ← critical move making cls satisfied;
15 if score �= −∞ then
16 Perform move, assigning var to new value;

17 until 3 times;
18 if no move performed in previous loop then
19 Change assignment of some variable in some unsatisfied clause;

boolean or arithmetic variables are considered. Alternatively, we can combine the
lists of moves and decide between them based purely on make-break scores. We
take the latter approach in this paper. There are other aspects of the algorithm
that are left unspecified, including how the best move is computed on line 7, and
the heuristic choice of moves on line 19. These will be specified in more detail
in the next sections.

3 Incremental Computation of Variable Scores

One key step in Algorithm 1 is computing the move with the best make-break
score. The computation for boolean variables is standard (and is in any case not
the bottleneck here), hence we focus on critical moves for arithmetic variables.
The default approach is to loop over all variables in all unsatisfied clauses. For
each variable, compute its score with respect to each clause and then combine
the results (as demonstrated in Example 1). However, it is clear that this may
result in repeated computations across iterations. For example, the feasible set
of some variable with respect to a clause may be recomputed, even if none of
the variables in that clause are changed in the previous step. Following the idea
of caching and updating scores in GSAT [40], we propose data structures for
caching and updating score information for arithmetic variables.
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We define a boundary to be a quadruple 〈val , is open, is make, cid〉, where
val is a real number, is open and is make are boolean values, and cid is a clause
identifier. The boundary indicates that there is a change in make-break score
when moving from less than to greater than val due to clause cid . If is make is
�, the score is increased by the weight of clause cid , otherwise it is decreased
by the weight. If is open is �, the change is not active at val , otherwise it is
already active at val . There is a natural ordering among boundaries, first order
by val and then by is open (with ⊥ < �). The make-break score information
of each variable with respect to each clause can be characterized by a starting
score (indicating the make-break score of large negative values), together with a
set of boundaries. The make-break information of each variable with respect to
all clauses is formed by summing the starting score and taking the union of the
sets of boundaries. We illustrate the computations in the following example.

Example 2. Continuing from Example 1, the starting score and boundary infor-
mation of variable x with respect to each clause is as follows (we identify the
three clauses as 1, 2, 3, respectively).

– x2 + y2 ≤ 1: starting score 0, boundary set {(0,⊥,�, 1), (0,�,⊥, 1)}, indicat-
ing no change for large negative values, make at boundary [0, · · · , followed
by break at boundary (0, · · · .

– x + y < 1: starting score 3, boundary set {(0,⊥,⊥, 2)}, indicating make at
large negative values, and break at boundary [0, . . . .

– x + z > 0: starting score −2, boundary set {(−1,�,�, 3)}, indicating break
at large negative values, and make at boundary (−1, . . . .

The combined make-break score information is: starting score 1, with the
following (ordered) set of boundaries: {(−1,�,�, 3), (0,⊥,�, 1), (0,⊥,⊥, 2), (0,
�,⊥, 1)}. Make-break score information in terms of intervals can be easily recov-
ered from the above, by traversing the boundaries in order, increasing the score
by the weight of the clause when encountering a boundary with is make = �,
and decreasing the score by the weight otherwise.

During local search, after each move of variable v to a new value, only those
variables v′ that share a clause with v need to have their make-break score
information updated (this is analogous to the concept of dependent variables in
the SAT case), and moreover boundary information need to be updated for the
shared clauses only. This is summarized in Algorithm 2. The set S collects the
set of variables sharing a clause with v. Line 5 recomputes starting score and
boundary information. Line 7 recomputes best critical move and score for each
updated variable.

Example 3. Continuing from Example 2, suppose the move y 
→ −2 is made,
making the clause x + y < 1 satisfied. Then the score information for variable
z does not need to be updated, as y and z do not share a clause. The score
information for variable x need to be updated for the first two clauses. For
clause x2 + y2 ≤ 1 there is no longer any boundaries (no assignment of x can
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Algorithm 2: Incremental computation of make-break scores
Input : Variable v that is modified
Update: Make-break score for all variables

1 S ← {} ; // set of updated variables
2 for clause cls that contains v do
3 for variable v′ appearing in cls do
4 add v′ to S;
5 recompute starting score and boundary of v′ with respect to cls;

6 for variable v′ in S do
7 recompute best critical move and score in terms of boundary information;

make the clause true), and for clause x + y < 1 the new starting score and
boundary set are 0 and {(3,⊥,⊥, 2)}, respectively. So the overall starting score
and boundary set are −2 and {(−1,�,�, 3), (3,⊥,⊥, 2)}.

Remark 1. Data structures such as arrays, linked lists, or binary trees can be
used to maintain set of boundaries. If the total number of boundaries for each
variable is small (as is the case for most of the problem instances in SMT-LIB),
arrays or linked lists are sufficient. Otherwise the use of binary trees result in
better asymptotic performance for the required operations.

Remark 2. A further optimization can be made: it is not necessary to immedi-
ately recompute the boundary information for a variable v′ that does not appear
in any unsatisfied clause, as such variables will never be chosen either on line 7 or
line 14 of Algorithm 1. Instead, flags can be used to mark that boundary infor-
mation for certain clauses need to be updated for v′. When at least one of the
clauses containing v′ becomes unsatisfied, information for those flagged clauses
(as well as other clauses that need to be updated for that step) are updated.

4 Relaxation of Equalities

Equality constraints with degree greater than one pose special difficulty for local
search, since it may force assignments of variables to irrational (e.g. algebraic)
numbers. For example, for the constraint x2 + y2 + z2 = 1, with most rational
assignments to x and y, the assignment to z would be forced to be irrational
in order for the constraint to be satisfied. While it is possible to represent and
compute with algebraic numbers during local search, the time-cost of such com-
putation is significantly increased. Even without considering algebraic numbers,
numbers with increasingly large denominators are also problematic for slowing
down the search process.

Both [29,31] avoid algebraic numbers by either limiting themselves to the
multilinear case, or considering only equality constraints with at least one lin-
ear variable (and solving only for those linear variables). The work [29] further
incorporated comparison of size of denominators (as well as absolute value) of
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potential assignments into the scoring heuristic, in order to keep the complexity
of assigned values as low as possible.

We propose a novel approach to address the problem of assignments to irra-
tional values and values with large denominators, that allow the algorithm to be
applied efficiently to the full set of nonlinear arithmetic problem instances. The
approach still relies on comparing complexity of assigned values, hence we first
define it below.

Definition 2 (Complexity of values). We define a preorder ≺c on algebraic
numbers as follows. x ≺c y if x is rational and y is irrational, or if both x and y
are rational numbers, and the denominator of x is less than that of y. We write
x ∼c y if neither x ≺c y nor y ≺c x.

The relaxation mechanism can be described simply as follows: whenever some
equality (or inequality) constraints force an assignment of some variable to a
comparatively complex value, those constraints are relaxed before continuing
the local search process, so that such assignments never actually occur. The
implementation is parameterized by two thresholds. The parameter εv (for vari-
able threshold) specifies the complexity of assigned values (according to Defini-
tion 2) beyond which relaxation of constraints should be applied. The parameter
εp (for polynomial threshold) specifies the amount of relaxation of polynomial
constraints. Both εv and εp are chosen to be 10−4 in the implementation.

It should be noted that the constraints p ≥ 0 and p ≤ 0 together can also force
the assignment of variables to irrational values. These constraints may appear
as part of clauses with more than one literal, and hence are not equivalent to
p = 0. This means in general we consider relaxation of non-strict inequalities,
although we will still use the slightly imprecise (but more intuitive) description
of relaxing equalities throughout the paper.

The detailed method for determining which constraints to relax is as fol-
lows. When computing the best make-break score of a variable v, if that score
comes from a one-point interval, the set of clause identifiers in the boundaries
contributing to that interval are recorded. If the variable v is chosen, and the
new value of v is more complex than both εv and any other previously assigned
value (according to Definition 2), all equalities and non-strict inequalities in
the recorded clauses that contribute to the boundary are relaxed. The result of
relaxation is as follows.

– If the constraint is of the form p = 0, it is relaxed into the pair of inequalities
p < εp and p > −εp.

– If the constraint is of the form p ≥ 0, it is relaxed into p > −εp. Likewise, if
the constraint is of the form p ≤ 0, it is relaxed into p < εp.

Note that strict inequality constraints cannot force a variable to a particular
value. After relaxation, the local search process proceeds as before, but with
all evaluation of literals and computation of make-break scores according to the
relaxed interpretation of literals.
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After local search finds a “solution” under the relaxation of some constraints,
it is only an approximate solution. In fact, there is no guarantee that there is
an exact solution nearby. We currently try two different ways to find an exact
solution near the approximate solution.

The first method performs a heuristic analysis of the structure of the relaxed
constraints, in an attempt to find an order of solving for the variables that is likely
to produce variable assignments that satisfies all of the equations. Essentially,
we are trying to find an exact solution to a set of equality constraints, nearby
an existing approximate solution. The analysis performs the following steps:

1. If any variable is currently assigned to zero, this is substituted into the con-
straints. We found this very helpful in practice for eliminating many terms in
the constraints.

2. Eliminate any variable x in an equation of the form p · x + q = 0, where the
valuation of p under the current assignment is not close to zero. This is more
general than eliminating variables during preprocessing, which requires p to
be constant (see Sect. 5.2).

3. Finally, we iteratively look for a variable that appear only in one of the
equations. We associate this variable to the corresponding equation, and then
remove the equation from consideration in the ensuing iterations.

If no equations remain at the end of Step 3, we attempt to find an exact solution
to the equality constraints by solving for the variables in reverse order of the
above process. We begin by considering the association between variables and
equations in Step 3 in reverse order, solving for each variable using the associated
equation. Then we obtain the values of solved variables in Step 2 in reverse order.
The final exact solution to these equations is checked again for satisfaction of all
clauses (various numerical inaccuracies may prevent it from being so). If there
are unsolved equations remaining after Step 3 of the above analysis, or if the
resulting solution fails to satisfy all clauses, we move to the second approach.

The second approach uses a simplified version of local search itself to try to
move the approximate solution to an exact solution. First, restore the relaxed
constraints to their original forms, and then proceed with local search on the
arithmetic variables only, until either an exact solution is found, or no improve-
ment can be made. This is a more limited form of the general local search, as we
do not attempt changes to boolean variables, or try random moves in case no
improvements can be made. Hence it is likely to terminate quickly with either
an exact solution or report of failure.

The above description is summarized as a modification of the overall algo-
rithm, shown in Algorithm 3. The main change to the search process is to relax
constraints whenever it forces an assignment to values that are more complex
than the variable threshold (line 18). If all clauses are satisfied (indicating an
approximate solution is found), we first try finding an exact solution nearby by
analyzing the structure of relaxed constraints (line 4). If this fails, we try the
limited form of local search described above (line 8–9). If this also fails, the
search is restarted with a fresh assignment (line 13).
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In practice, we find the two heuristic approaches for finding exact solutions
to be useful in different scenarios. The first approach deals nicely with cases
where the structure of equality constraints involves solving systems of linear
equations, but otherwise poses no difficult choices. The second approach can
better handle those cases where there may be choices in which variables to
modify, but only some of them is correct in order to satisfy the other inequality
constraints. It may also be possible to apply more advanced methods for solving
equations or determining existence of solutions in [12,32]. However, the methods
we implement easily extends to the non-zero-dimensional case, and returns exact
solutions that can be verified independently. We leave the incorporation of more
advanced methods for solving equations to future work.

Algorithm 3: Relaxation of equalities
Input : A set of clauses F
Output: An assignment of variables that satisfy F , or failure

1 Initialize assignment to variables;
2 while � do
3 if all clauses satisfied then
4 success ← find exact solution by analyzing structure of equations;
5 if success then
6 return success with assignment ;

7 else
8 Restore relaxed constraints to original form;
9 success ← find exact solution by limited local search;

10 if success then
11 return success with assignment ;

12 else
13 Perform major restart;

14 if time or step limit reached then
15 return failure;

16 if no improvement for T1 steps then
17 Perform minor restart;

18 Proceed as in line 7-19 of Algorithm 1, except constraints may be relaxed;

5 Implementation

In this section, we describe the implementation in more detail. First, we explain
our choice of heuristic move selection when encountering a literal without critical
moves. Then, we describe some further details on preprocessing, restart mecha-
nism, and other efficiency improvements.
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5.1 Heuristic Moves Selection and Look-Ahead

One major difficulty for local search in nonlinear arithmetic is that it is not
always possible to find single-variable moves to satisfy a particular constraint. For
example, given constraint x2+y2 < 1, and the current assignment x 
→ 2, y 
→ 3,
it is not possible to satisfy the constraint by moving only one of x and y. During
local search, this is reflected by the situation that no critical move is available
for a clause or literal.

Solving this problem in general would likely require complex algorithms
such as CAD or polynomial optimization. Indeed, one category in the SMT-
LIB benchmarks, Sturm-MBO, coming from analysis of biological networks [3],
consists exclusively of problems that require a very complex polynomial to eval-
uate to zero, subject to positivity constraints of the variables. When the problem
has many variables (is high-dimensional), any approach based on heuristically
searching for assignments would have difficulty finding the exact combination of
assigned values required to satisfy the constraint.

One approach is given in [31], which involves searching in directions other
than those parallel to the coordinate axes to look for solutions. The use of gradi-
ent information, as well as scoring based on values of polynomials, increase the
chance of finding a solution.

In this paper, we propose another approach that still involves moving only
one variable at a time. We say a literal is stuck if it is currently unsatisfied and
has no critical moves to make it satisfied. Given a literal l that is stuck, we first
choose a variable x in l whose coefficient is nonzero (according to the current
assignment of the other variables), then heuristically pick a set of candidate
values to move the assignment of x to. For each candidate value, we compute
whether l is still stuck after making that move. We then prefer those moves that
result in l no longer being stuck.

Given the current assignment x0 and the feasible set I of variable x (see
Sect. 5.2), the heuristic move selection include the following:

1. rational numbers and integers close to the boundary inside each interval of I.
The rational numbers are chosen to be within 10−4 of the boundary.

2. the next integer smaller or larger than x0.
3. three numbers chosen uniformly in the interval [x0

2 , x0), and three numbers
chosen uniformly in the interval (x0, 2x0].

The first class reflects what we know about the constraints on x. The sec-
ond class attempts basic random walk, and prefers (simple) integer values. The
third class is the most general, allowing search over large/small values as well as
fractions.

The above ideas are summarized in Algorithm 4. The heuristic choice of
candidate values are collected into set S (line 2). Then each value in S is tested
in turn. If l has critical move after assigning to any value, that value is returned
(line 5). Otherwise a randomly chosen value from S is returned (line 7).
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Algorithm 4: Heuristic choice of candidate values and look-ahead for crit-
ical moves
Input : Literal l without critical moves
Output: Candidate variable x and new value x1

1 x ← variable in polynomial of l with nonzero coefficient;
2 S ← heuristic move selection for variable x;
3 for value x1 in S do
4 if l has critical move after assigning x to x1 then
5 return x, x1

6 x1 ← randomly chosen value in S;
7 return x, x1

5.2 Implementation Details

The algorithm is implemented on top of the Z3 prover, and makes use of its
library for polynomials and algebraic numbers, as well as data structures for
clauses and literals, but otherwise separate from its implementation of the
MCSAT algorithm.

Preprocessing. The following preprocessing steps are used. Eliminate
clauses with a single boolean variable and propagate assignments. Combine con-
straints p ≥ 0 and p ≤ 0 into equality p = 0 (when they appear as clauses on
their own; literals p ≥ 0 and p ≤ 0 that are parts of larger clauses cannot be
combined). Eliminate variable x in an equation of the form c · x + q = 0, where
c is a constant and q is a polynomial with degree at most 1 and containing at
most 2 variables. The conditions on q are designed so that preprocessing does
not significantly increase the complexity of the remaining clauses.

Restart Mechanism. We use a two-level restart mechanism with two
parameters T1 and T2 (both chosen to be 100 in our implementation). Perform
a minor restart after T1 moves without improvements, which randomly changes
one of the variables in one of the unsatisfied clauses. After T2 such minor restarts,
a major restart is performed that resets the value of all variables.

Shortcut for Linear Equations. Root-isolation is done by calling the exist-
ing implementation in Z3, except when the variable to be solved is linear in the
polynomial, in which case a direct (and more efficient) solution method is used.

Infeasible Sets of Variables. For each clause involving a single variable,
derive infeasible set for that variable implied by the clause. Experience shows
that excluding assignments from the infeasible set during local search is beneficial
for some problem instances but not others. Hence, we exclude such assignments
on alternate turns of minor restarts.

Parameter Settings. Values of tunable parameters used in the implemen-
tation are summarized in Table 1.
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Table 1. Tunable parameters of the algorithm

Symbol Explanation Value

sp Probability sp for PAWS scheme 0.006

T1 Number of non-improving steps before minor restart 100

T2 Number of minor restarts before major restart 100

εv Threshold for relaxing equality 10−4

εp Amount of relaxation 10−4

6 Evaluation

In this section, we compare the implementation with those of complete proce-
dures in existing SMT solvers Z3 [33], cvc5 [4] and Yices [14], as well as previous
work on local search for (fragments of) nonlinear arithmetic. We also perform
an ablation study on the two improvements described in Sect. 3 and 4.

The benchmark used in the evaluation comes from SMT-LIB’s QF NRA
theory. The benchmark consists mostly of industrial problems from various
applications of constraint solving in nonlinear real arithmetic, including analysis
of nonlinear hybrid automata (hycomp) [13], and generating ranking functions
for termination analysis (LassoRanker) [22,28]. The kissing benchmark contains
encoding of the kissing problem, which asks how many unit spheres in a given
dimension can be placed tangent to a single unit sphere without intersecting each
other. Each benchmark is labeled with either sat, unsat or unknown, according to
whether it is known to be satisfiable/unsatisfiable at time of submission. Many
of the unknown problems are in fact shown to be unsatisfiable by complete algo-
rithms implemented in solvers such as Z3 and cvc5. For the experiments, we
choose all problems from the benchmarks that are labeled sat or unknown, but
excluding those unknown instances that are found to be unsatisfiable by either
Z3 or cvc5. We also note that the SMT-LIB benchmarks contain problems with
a wide range of difficulties, but without specified difficulty ratings. For example,
many problem instances in the metitarski category, from the MetiTarski tool for
proving theorems involving special functions [2], are quite small and do not pose
much of a challenge for either local search or complete algorithms.

This yields a total of 6216 instances. The experiments are run on a cluster of
machines with Intel Xeon Platinum 8153 processor at 2.00 GHz. Each experiment
is run with a time limit of 20 min (as in the SMT competition) and memory limit
of 30 GB.
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6.1 Overall Result

Results of our implementation are compared against that of other SMT solvers
in Table 2. One major advantage of our algorithm is in the Sturm-MBO category,
which involves a single complicated polynomial that tripped up other solvers.
However, we also showed good result across other categories, and solved most
instances overall.

There is significant amount of complementarity between our algorithm and
both Z3 and cvc5. As shown in Table 2, there are 148 instances across seven
different categories that are solved by local search, but none of Z3, cvc5, and
Yices. Moreover, there are 291 instances solved by local search but not Z3, and
378 instances solved by local search but not cvc5. Scatter plots comparing solu-
tion times against Z3 and cvc5 are shown in Fig. 1, showing there is significant
complementarity in solving times as well.

Fig. 1. Scatter plots of running time vs. Z3 and cvc5.

We also note there is a large number of relatively simple problem instances
among the SMT-LIB benchmarks for QF NRA. To put this into quantitative
form, we counted the number of instances that are solved within 1 s by all of Z3,
cvc5, and our solver. There are 4765 such instances, leaving only 1451 instances
that can be considered “challenging” to the solvers. From this view, the overall
improvement in the number of solved instances, number of unique solved, and
amount of complementarity are quite significant.
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Table 2. Comparison with other SMT solvers. Column #inst is the number of instances
in the category. Column Z3, cvc5, Yices, and Ours shows number of solved instances
by three existing SMT solvers and our implementation. Column Unique is the number
of instances solved by our implementation but none of the other three SMT solvers.

Category #inst Z3 cvc5 Yices Ours Unique

20161105-Sturm-MBO 120 0 0 0 88 88

20161105-Sturm-MGC 2 2 0 0 0 0

20170501-Heizmann 60 3 1 0 8 6

20180501-Economics-Mulligan 93 93 89 91 90 0

2019-ezsmt 61 54 51 52 19 0

20200911-Pine 237 235 201 235 224 0

20211101-Geogebra 112 109 91 99 101 0

20220314-Uncu 74 73 66 74 70 0

LassoRanker 351 155 304 122 272 13

UltimateAtomizer 48 41 34 39 27 2

hycomp 492 311 216 227 304 11

kissing 42 33 17 10 33 1

meti-tarski 4391 4391 4345 4369 4351 0

zankl 133 70 61 58 100 27

Total 6216 5570 5476 5376 5687 148

6.2 Comparison with Other Work on Local Search

We further compare our results against existing work on local search for frag-
ments of nonlinear real arithmetic. Of the 979 instances that are multilinear
considered by [29], our implementation can solve 826 instances, compared to
891 solved instances there. The slightly weaker result is likely due to the more
efficient implementation that is possible when only rational numbers need to be
considered, and the parameter tuning that is specific to multilinear problems.
Of the 2736 instances from SMT-LIB considered by [31], our implementation
can solve 2589 instances, compared to 2246 solved instances there. In fact, we
solve not only more instances than the local search algorithm given in [31], but
also all other SMT solvers used in the comparison. We note that the result given
in [31] uses different underlying software (including Maple) and runs on different
machines, so this gives only a rough comparison.

6.3 Effect of Incremental Computation of Variable Scores

To show the effect of speedup resulting from incremental computation of variable
scores in Sect. 3, we compare three versions of the implementation: with incre-
mental computation (Incremental), without incremental computation (Naive),
and without incremental computation, but limiting the number of unsatisfied
clauses considered at each turn to 45 (Limit-45). The results are shown in Table 3.
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We see that while the difference in total number of problem instance solved
is not large, a noticeable effect is still present in the LassoRanker category, whose
instances usually require a long time to solve. A closer look at the running
time shows that it usually takes 2–10 times longer to solve a particular instance
using either (Naive) or (Limit-45) compared to (Incremental), with the exact
ratio depending strongly on the specific instance. For a time limit of 20 min the
resulting difference in the number of solved problems is not large, but we expect
a larger difference with shorter time limits, and especially when local search is
incorporated into other methods such as DPLL [8,9].

6.4 Effect of Relaxation of Equalities

We demonstrate the effect of relaxation of constraints by comparing three possi-
ble implementations: with relaxation of constraints (Relaxation), without relax-
ation of constraints, but preferring variable assignments that are less complex
than εv (Threshold), and without relaxation of constraints, with choosing vari-
able assignments without considering complexity order (NoOrder). The results
are shown in Table 4.

The results indicate that while taking complexity of assigned values into con-
sideration does have an effect in keeping the search efficient for most categories
of problem instances, it is not sufficient for the hycomp category, which involves
a large number of nonlinear equalities. In that category using relaxation of con-
straints have a significant effect, while also performing well in other categories.

Table 3. Comparison showing effect of incremental computation

Category #inst Incremental Naive Limit-45

20161105-Sturm-MBO 120 88 85 85

20161105-Sturm-MGC 2 0 0 0

20170501-Heizmann 60 8 5 5

20180501-Economics-Mulligan 93 90 89 89

2019-ezsmt 61 19 19 15

20200911-Pine 237 224 222 222

20211101-Geogebra 112 101 101 101

20220314-Uncu 74 70 70 70

LassoRanker 351 272 264 269

UltimateAtomizer 48 27 26 26

hycomp 492 304 298 298

kissing 42 33 32 33

meti-tarski 4391 4351 4352 4352

zankl 133 100 100 100

Total 6216 5687 5663 5665
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Table 4. Comparison showing effect of temporary relaxation of constraints

Category #inst Relaxation Threshold NoOrder

20161105-Sturm-MBO 120 88 100 99

20161105-Sturm-MGC 2 0 0 0

20170501-Heizmann 60 8 9 3

20180501-Economics-Mulligan 93 90 89 86

2019-ezsmt 61 19 19 19

20200911-Pine 237 224 223 222

20211101-Geogebra 112 101 98 92

20220314-Uncu 74 70 70 70

LassoRanker 351 272 277 278

UltimateAtomizer 48 27 26 20

hycomp 492 304 211 164

kissing 42 33 31 27

meti-tarski 4391 4351 4353 4360

zankl 133 100 100 100

Total 6216 5687 5606 5540

6.5 Other Techniques

We also tried other techniques commonly used in works on local search, including
tabu search [20], switching between phases for adjusting boolean and arithmetic
variables (as applied in [7]), and incorporating random walk (such as variants of
WalkSAT [23]). Unlike their applications in earlier work, the use of such methods
did not result in noticeable improvements on the current benchmark. However,
it remains to investigate whether they will be useful on other types of problems,
or in combination with other improvements to the algorithm.

7 Conclusion

In this paper, we presented improvements to the local search algorithm for solv-
ing SMT problems in nonlinear real arithmetic. Building upon the basic struc-
ture of local search, we presented incremental computation of variable scores and
temporary relaxation of constraints. We also described heuristic move selection
with look-ahead for dealing with literals without critical moves, and implemen-
tation details to improve efficiency. The resulting implementation is competitive
against complete algorithms based on DPLL(T ) and MCSAT on satisfiable prob-
lem instances, as implemented in other SMT solvers. It is the first local search
algorithm designed for the entirety of nonlinear real arithmetic, covering a wider
range of problems than existing work [29,31].

While the methods proposed in this paper made progress in addressing chal-
lenges of local search for nonlinear real arithmetic, there are remaining problems
that represent interesting directions of future work.
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– Look-ahead for critical moves presents another way to improve upon random
search in cases when no critical move is available. On the other hand, methods
based on CAD or polynomial optimization would give a more complete way
to determine assignments that satisfy a certain literal. A major challenge is
how to incorporate such algorithms into local search in an efficient way.

– In the current work, after an approximate solution is found that satisfies the
relaxed version of equalities, we use various heuristic methods to attempt to
find an exact solution nearby. Designing or incorporating more general algo-
rithms for finding exact solutions near approximate solutions (or determining
that none exist) is an interesting problem that we leave to future work.

– Finally, local search can be incorporated into complete methods such as
DPLL, improving its performance even on unsatisfiable instances, as shown
by the works [8,9]. It is interesting to investigate this possibility for SMT
problems over nonlinear real arithmetic. The improvements in efficiency in
our work would be very helpful for such combination, as in those cases local
search is only given very short running times.
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